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Exploring the validity of the engineering design self-efficacy scale for 
secondary school students (Research to Practice) 

 

Introduction and Background  

Pre-college engineering education efforts and associated research has seen a sharp rise in the last 
two decades to address the growing needs of providing engineering experiences at the elementary 
and secondary levels [1-2]. The existing literature has expanded our understanding of pre-college 
engineering curricula, extracurricular activities, teacher professional development efforts, and 
student motivations. The majority of this work has been conducted as small-scale, exploratory 
studies [3]. Studies are still needed that explore cognitive and affective constructs within a pre-
college engineering context to provide depth of understanding that is reliable and generalizable 
across different pre-college student populations [4]. The present study aims to partially fill this gap 
by examining validity evidence associated with the engineering design self-efficacy (EDSE) scale 
[5] within the context of pre-college engineering education. 

Self-efficacy refers to individuals’ belief in their capabilities to perform a domain-specific task 
[6]. According to Bandura’s self-efficacy theory [6], self-efficacy plays a significant role in 
guiding human action and change by having mediating influence on individuals’ interest in 
particular tasks, persistence in the face of obstacles, choice of behavioral activities, and task 
performance [6]. Bandura hypothesized that self-efficacy within specific domains can be 
developed by four primary sources of information: (a) performance accomplishment or mastery 
experiences (i.e., previous successes and failures on similar tasks), (b) verbal or social persuasion 
(e.g., encouraging or discouraging messages from others), (c) vicarious learning (i.e., observation 
of social models and self-modeling), and (d) physiological arousal (e.g., enthusiasm or anxiety 
associated with task performance) [6]. Educational researchers have investigated the sources of 
self-efficacy in diverse tasks so that such principles can be used in designing instructional 
strategies [7]. 

Significant efforts in engineering education have been made to understand the role of self-efficacy 
for students because of  its demonstrated positive impact on student outcomes, such as performance 
and persistence [8-13]. These studies have investigated and developed measures for different 
domains of engineering self-efficacy (e.g., general academic, domain-general, and task-specific 
self-efficacy). The EDSE scale is a frequently cited measure that examines task-specific self-
efficacy within the domain of engineering design. This scale has been primarily used by 
researchers and practitioners with  engineering undergraduate students to assess changes in their 
engineering design self-efficacy as a result of active learning interventions, such as project-based 
learning [14-16]. Our work has begun to experiment with the use of this scale in a secondary 
education context. There is a need to examine score validity and reliability of this scale in non-



 
 

 

undergraduate populations to better understand the trustworthiness of the measure with other 
populations (e.g., secondary students).  

The following study is situated in the Engineering for US All (e4usa): A National Pilot Program 
for High School Engineering Course and Database program, a new pre-college engineering 
initiative funded in 2018 by the National Science Foundation. The program aims to demystify 
engineering for all high school students as an avenue to engineering literacy and a means of 
enhancing potential engineering pathways [17]. The e4usa course was intentionally designed to 
be inclusive by providing engineering design experiences relating to student fields of interest in 
local and global contexts. The course objectives are broken down into four major threads and 
woven through seven units. The four threads include: a) discovery of the discipline of 
engineering and engineering identity, b) intersection of society and engineering, c) professional 
skills of teaming, communication, and project management, and d) process of engineering 
design. The year-long course was designed based on the First Year Engineering Classification 
Scheme, which was used to classify all possible content found in first-year Introduction to 
Engineering courses in general-admit engineering programs [18]. The intent was not only to 
create a bridge course for students who may want to select engineering majors in universities, but 
also to develop engineering-centric skills (e.g., problem-solving, design thinking, innovation, 
evaluation, and iteration) that cut across a broad range of fields and prepare students for 21st 
century careers. 

The e4usa course was piloted in nine high schools across the United States during the 2019 - 2020 
academic year. The void of validity and reliability evidence reported for this scale among the pre-
college student population prompted the research team to examine the instrument’s score validity 
and reliability to support proper use of the EDSE scale for researchers and practitioners in pre-
college engineering education settings. The following subsections describe and discuss the 
methods used, emergent results, conclusions, and future potential directions. 

 

Methods  

Measure 
Data used for this study is part of a dataset collected to evaluate student outcomes from the 
implementation of e4usa curriculum. The measured student outcomes include the changes in 
students’ beliefs and attitudes towards their ability to perform engineering design and engineering 
as a future career pathway. A pre and post-survey design was used for the larger study to compare 
the students’ responses before and after the course; the current study only used the data from the 
post-survey. The data were collected using a survey developed by the e4usa research team 
consisting of researchers in engineering education, psychology, and traditional engineering 



 
 

 

disciplines. The complete survey contains 56 items broken down into three sections, including six 
demographic items. 

Student self-efficacy to conduct engineering design activities was examined using the EDSE scale 
[5]. The scale prompts participants to rate their degree of confidence, i.e., self-efficacy, to perform 
engineering design tasks using an 11 point generic scale from 0 (low confidence) to 10 (high 
confidence) (see Table 1). The original first item - conduct engineering design - of the scale was 
removed for this study. This item was designed to capture engineering design using a single item. 
We chose to focus on capturing student perceptions of engineering design by presenting embedded 
steps rather than a single item. 
 

Table 1 Engineering Design Self-Efficacy (EDSE) Scale  
 
 

Instruction: In this section, please rate your degree of confidence to perform the following tasks. 
Item  Scale 

Identify a design need 
Please use the following scale: 
 
0 = low confidence 
5 = moderate confidence 
10 = high confidence 
 
Example:  
 

 

Research a design need 

Develop design solutions 

Select the best possible design 

Construct a prototype 

Evaluate and test a design 

Communicate a design 

Redesign 
  

This scale was originally designed with the intent of measuring undergraduate engineering 
students’ self-efficacy toward engineering design. Initial work conducted by Carberry et al. [5] 
using a diverse sample of individuals - engineering or engineering education professors, engineers, 
engineering education graduate students, engineering graduate students, engineering 
undergraduate students, non-engineers with science backgrounds, and non-engineers without 
science backgrounds - revealed a single factor among the eight items plus three separate factors 
around motivation, expectancy for success, and anxiety. Replication work later conducted by 
Major et al. [19] using a sample of undergraduate engineering students revealed a potential overlap 
between confidence and expectancy for success following CFA. Evidence of score validity and 
reliability provided through these two studies, along with various additional uses of the instrument 
(e.g., [20-22]), support the structure and reliability of the instrument.  

 

Procedure 



 
 

 

Data for the current study were collected over two weeks in Spring 2020 with students enrolled in 
the e4usa course. The e4usa teachers solicited students’ participation in the online survey by first 
collecting student assent and parental consent forms. Teachers sent a follow-up recruitment email 
to students to participate in the online survey using a Google Form. Responses from the students 
who submitted both assent and consent forms were used among all the responses collected. 
Students’ responses were collected from six schools located in different regions across the US.  
 

Participants and Demographics  

A total of  151 survey responses were collected; 14 responses were removed on the basis that they 
did not provide completed responses to the first section for the EDSE scale. The demographics for 
the final sample of 137 responses is noted in Table 2. The sample was majority female (59%) and 
self-identified as Black/African American (54%); four participants didn’t provide demographic 
information. The participants’ age ranged from 15 to 18 (M = 16 years, SD = 0.83 years).  
 

Table 2. Demographic Information 

Gender  

Male 58 (44%) 

Female 79 (59%) 

Age  

15  38 (28%) 

16 74 (54%) 

17 15 (11%) 

18 10 (7%) 

Race / Ethnicity  

American Indian or Alaska native 0 (0%) 

Asian 12 (9%) 

Black or African American 72 (54%) 

Hispanic or LatinX 17 (17%) 

Native Hawaiian or Other Pacific Islander 3 (2%) 

White 22 (22%) 

Multiple races/ethnicities 3 (2%) 

International 3 (2%) 



 
 

 

Exploratory Factor Analysis  

An EFA was conducted for the eight items to explore the number of emergent factors. Factor 
analysis was conducted using the SPSS statistical software package (v. 25). The assumption that 
missing data were completely at random (MCAR) was examined by using Little’s test [23] prior 
to EFA analysis. All missing data determined to be MCAR were deleted using listwise deletion 
because the amount of missing data as a percentage of complete data was only 2%. The final 
sample includes 137 responses, which met the minimum criterion of at least five to ten respondents 
per item [24].  

Next, the factorability of the EDSE scale was examined using Kaiser-Meyer-Olkin (KMO) test 
and Bartlett’s test of sphericity [25]. The KMO test measures the degree of shared variance among 
items as a function of partial correlations. This means that items having smaller partial correlations 
result in higher KMO scores as they share a common factor. KMO scores above 0.8 support the 
existence of an underlying factor(s), indicating that factor analysis is possible. Bartlett’s test of 
sphericity measures the hypothesis that the item correlation matrix is an identity matrix, which 
represents that factor analysis is not possible as the items are unrelated. A significant test result (p 
< 0.05) rejects the null hypothesis, indicating that the data are factorable [25].  

The number of factors were then determined using a scree plot examination, Kaiser test, and 
parallel analysis [24]. The scree plot is a line plot of eigenvalue factors that shows the point at 
which extracting more factors does not explain more variance. The Kaiser method retains factors 
with eigenvalues greater than 1 [24]. Parallel analysis helps determine meaningful factors from a 
large number of random data sets with the same dimensionality as the real data set for this study. 
The eigenvalue generated from the random data set is compared with the eigenvalue generated 
from the real data set. Factors in the real data set with eigenvalues larger than the 95th percentile 
eigenvalues from its random counterpart are retained. Parallel analysis is regarded as the gold 
standard to determine the number of factors, but the results from all three methods were considered 
to determine the number of factors for this study [26]. 

Factor analysis was conducted using principal axis factoring (PAF), which is recommended for 
conducting factor analysis in social science research as it allows for the possibility of error (e.g., 
unique variance) in the measurement of latent constructs [24]. Items with loadings less than 0.4 or 
cross-loadings on multiple factors greater than  0.3 were removed from the resultant factor 
structure [27].  

Finally, Cronbach’s coefficient alpha was used to examine the internal consistency of the resulting 
factor structure based scale score. A Cronbach’s coefficient alpha value serves as a statistical 
metric of data reliability.  Cronbach’s alpha values of 0.70 or higher are generally accepted with 
0.80 or higher being most desirable in social science research [24]. 



 
 

 

Results and Discussions 

EFA results 

The EFA and internal consistency reliability results showed evidence of validity and reliability of 
the eight item EDSE score. Descriptive statistics (Table 3) demonstrating absolute values of 
skewness and kurtosis less than 2.0 with inter-item correlations ranging from 0.32 to 0.64 (p=0.00) 
indicated the appropriateness to perform the EFA analysis using this data. Both the KMO test 
(score = 0.87) and Bartlett’s test (p = 0.000) determined that the item correlation matrix for this 
scale was factorable. Parallel analysis, Kaiser’s criterion method, and the scree plot each suggested 
a unidimensional factor model; Kaiser’s criterion test suggested an eigenvalue of 4.32, explaining 
53.98% of the variance accounted for in items by the latent factor. 

 

Table 3. Descriptive Statistics Results 

Item 
number M SD Skew Kurtosis 

Correlation 

2 3 4 5 6 7 8 9 p 

2 7.74 1.64 -0.71 0.29 1.00 0.54 0.44 0.38 0.35 0.46 0.40 0.35 

0.00 

3 7.69 1.92 -1.12 1.52 0.54 1.00 0.51 0.31 0.36 0.43 0.46 0.54 

4 7.42 1.78 -0.86 1.54 0.44 0.51 1.00 0.55 0.58 0.58 0.48 0.64 

5 7.61 1.64 -0.68 0.41 0.38 0.31 0.55 1.00 0.42 0.39 0.40 0.45 

6 6.96 2.14 -0.93 1.01 0.35 0.36 0.58 0.42 1.00 0.60 0.32 0.61 

7 8.04 1.63 -0.74 -0.15 0.46 0.43 0.58 0.39 0.60 1.00 0.54 0.56 

8 7.61 1.98 -1.18 2.09 0.40 0.46 0.48 0.40 0.32 0.54 1.00 0.53 

9 7.42 1.99 -0.98 1.64 0.35 0.54 0.64 0.45 0.61 0.56 0.53 1.00 
 

Note: Response scale ranged from 0 (low confidence) to 10 (high confidence).  
 

Table 4 shows the final factor solution with factor loadings and communalities for the eight items 
in the scale. The final model consisted of all eight items with factor loadings between 0.59 and 
0.81. Items two and five showed communalities lower than 0.4, but were not removed from the 
final factor solution considering the high factor loadings (>0.5). The final factor structure captured 
the overall process and tasks required to perform the engineering design process. A Cronbach’s 
alpha value of 0.88 revealed a high internal consistency among the items.   

 



 
 

 

Table 4. Exploratory Factor Analysis (EFA) Results 

Item Factor loading Commonality 

Develop design solutions 0.81 0.65 

Redesign 0.79 0.62 

Evaluate and test a design 0.75 0.56 

Construct a prototype 0.68 0.46 

Communicate a design 0.65 0.42 

Research a design need 0.64 0.41 

Select the best possible design 0.59 0.35 

Identify a design need 0.59 0.35 
 

Note: ‘Item 1. Conduct engineering design’ was not included for the EFA analysis. 

 
Table 5. Research settings and participants 

 This study Carberry, 2010 

Research 
settings 

Educational context Secondary education Higher education 

Course / curriculum 
implemented 

 
e4usa engineering design 

curriculum 
 

Learning -through-service (LTS) 
experience 

Institution Multi-institution Single institution 

Survey design Pre-post survey 
(Post survey used) One-time cross-sectional survey 

Participants 

Number 137 202 

Age (or Year) 15 - 18 21 - 62 

Note Higher percentage of Black / 
female participants 

Participants with diverse 
engineering experiences 

 

 

 

 



 
 

 

Descriptive Comparisons of the EFA results  

The resultant factor structure and factor loadings of the retained items for this study were compared 
with findings from a follow-up study conducted by Carberry [20] using a sample of 202 
undergraduate engineering students. Comparisons are made here to explore similarities and 
differences in the factor structures or patterns of factor loadings of the EDSE scale in different 
educational contexts among varied study populations (see Table 5).   

Table 6 presents the factor structure and factor loadings from the two research studies. The factor 
structure reported by Carberry [28] was replicated in the current study, identifying the same 
unidimensional factor structure consisting of the same eight items. Adequate EDSE score 
reliability was found for each study. 

 

Table 6. Comparisons of the EFA results  

Item 
Factor loading 

This study Carberry, 2010 

Identify a design need 0.59 0.92 

Research a design need 0.64 0.90 

Develop design solutions 0.81 0.92 

Select the best possible design 0.59 0.84 

Construct a prototype 0.68 0.88 

Evaluate and test a design 0.75 0.93 

Communicate a design 0.65 0.85 

Redesign 0.79 0.94 

Cronbach’s alpha value 0.88 0.96 

Number of factors 1 
 

Note: ‘Item 1. Conduct engineering design’ was not included for all the EFA analysis; Item numbers used for each 
study are identical to those used in the original study.  
 

The final solutions for both studies showed factor loadings above 0.59 for all items. Some items 
(e.g., develop design solution, evaluate and test a design, and redesign) commonly emerged with 
the highest loadings in both final factor structures. The item ‘identify design needs’ demonstrated  
the highest factor loadings for Carberry [28],  but showed the lowest factor loadings in the current 



 
 

 

study. These results suggest further examination of whether the difference in magnitude of factor 
loadings is statistically significant. Other results, such as the variance explained, could not be 
compared as this study only used analysis results reported by Carberry [28]. 

 

Conclusions and Future Works 

This study examined evidence of score validity and reliability for the usage of the EDSE scale in 
pre-college engineering education contexts. The analysis yielded a unidimensional factor structure 
with strong evidence of score validity and factor loadings ranging from 0.59 to 0.81. The resulting 
factor also showed high internal reliability with a Cronbach’s alpha value 0.88. The factor structure 
found by Carberry [28] in the context of higher engineering education was replicated in the present 
study, indicating measurement equivalence of the EDSE scale across the contexts of secondary 
and higher engineering education. 

Future work includes confirmatory factor analysis (CFA) after additional administration of the 
survey with a new cohort of students. This additional validity step will hopefully allow the research 
team to consider the engineering design self-efficacy of students enrolled in the [PROJECT 
NAME] course. This is particularly interesting considering the demographic characteristics of this 
study’s sample of secondary school students relative to current engineering enrollments in higher 
education [29]. Exploring these demographic differences may shed light on the structural 
invariance of the EDSE scale across different student groups.  

Another opportunity for further work includes the integration of these quantitative findings with 
qualitative data examining  students’ self-efficacy in performing engineering design processes 
within the e4usa program. A mixed-methods study is currently on-going to investigate contributing 
factors to students’ self-efficacy in the engineering design process in connection with the e4usa 
curriculum and its implementation.  

Results from this work provide the foundation to support the usage of the EDSE scale for 
secondary school students, introducing a measurement of engineering design self-efficacy to the 
pre-college engineering education community. This work also indicates a need for replication and 
reproducibility studies within the engineering education community that is particularly important 
given the recent growth in the number of engineering design courses emerging at different levels 
of pre-college education [30]-[31]. 
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