Breaking Traditional Barriers to Engineering Education

Subscribe to Our Newsletter

The course, Engineering for US All (e4usa), empowers, engages, and excites students to use what they know and find what they are passionate about to take control and boldly influence the world. Empowerment is built through an awareness of engineering in everyday life, the diversity of engineers, and by interrogating and emphasizing how engineering is embedded in society. Engagement occurs as students practice engineering design at multiple scales, considering local and global engineering design challenges. e4usa generates excitement as students are provided opportunities to design and create solutions in authentic, student-centered product development challenges. e4usa invites all schools, teachers, and students to fully participate regardless of their technical background or preparation.

Empowerment

e4usa is an onramp for students to learn about engineering as a profession and a personal practice, and increases student confidence to use engineering tools and thinking. Students will practice three systematic continuous improvement practices: consistent critical self-reflection, ethical action, and seeking feedback (e.g. performance data, mentoring, etc.). In the course, students will examine historical and current engineers and trace their professional origins to create their own understanding of the value of diversity in engineering, as well as build their own identity as a confident problem solver.

Engagement

This course will explore the interplay among society’s need for engineering, the intentions of engineers, and the positive and negative impacts of engineering. In multidisciplinary teams and individually, students will explore and embody various expert roles including both humanities and STEM-field experts as they grapple with humanity’s grand challenges. Students will grow an appreciation for how shifting scales (e.g. local, regional, global) change the potential impact on society with attention paid to ethical implications. 

Design Portfolio

Engineering design as a process, or design within constraint, is scaffolded in terms of a learning progression that can be practiced in any discipline. Students who complete this course will have had opportunities to create and iterate in at least 4 ways to contribute to their design portfolio.

  1. Teacher-led design experiences (e.g. Water Filter, Shoe Tread, Robot Mover, etc.)
  2. Self-directed ‘local product’ launch and a high school design-a-thon. 
  3. A solution to a global problem that is applicable in the students’ local context.
  4. A personal project or a solution addressing the needs of a classmate in the context of a global design challenge. 

Engineering Design Practices

Students will develop personal problem-solving agency by practicing a systematized method of engineering design that builds autonomy and mastery. Students will troubleshoot and optimize in contexts of increasing ambiguity and complexity. Students will practice negotiating tradeoffs in design and valuing the input of multiple disciplinary expertise. Communication of results will occur in a school-wide ‘innovation showcase’ and in documentation through a digital design portfolio shared with the entire e4usa community.

The e4usa curriculum consists of 8 units taught over the course of four nine-week quarters. Each unit covers our four signature course threads to help students achieve the following learning outcomes:

Red Thread: Discover Engineering

  • Iterate and evolve the definition of what it means to engineer and be an engineer.
  • Articulate changing perspectives on one's current identities with respect to engineering through regular reflection.
  • Recognize the value of engineering for all regardless of one's potential career.
  • Explain and apply ethical considerations when exploring an engineering problem.

Yellow Thread: Engineering in Society

  • Explore the impacts of past engineering successes and failures on society as a whole.
  • Use systems thinking to propose and analyze the relationship between inputs, intention, and impacts of technology in society.
  • Recognize and investigate the world's greatest challenges and the role that engineering plays in solving these challenges (e.g., Engineering Grand Challenges, UN sustainability goals, etc.).
  • Integrate diverse disciplinary thinking and expertise to inform design solutions that add value to society.
  • Identify and analyze issues when bringing a solution to scale.

Blue Thread: Engineering Professional Skills

  • Apply strategies to collaborate effectively as a team.
  • Use various forms of communication (oral, written, visual).
  • Recognize when to use various communication tools based on audience.
  • Develop, implement, and adapt a project management plan.
  • Contribute individually to overall team efforts.

Green Thread: Engineering Design

  • Uncover a problem that can be solved with a potentially new product or process.
  • Identify appropriate stakeholders and evaluate stakeholder input.
  • Plan and conduct research by gathering relevant and credible data, facts, and information.
  • Model physical situations using mathematical equations.
  • Evaluate solution alternatives and select a final design by considering assumptions, trade offs, criteria, and constraints.
  • Use and recognize when to use computational tools.
  • Create a prototype.
  • Create and implement a testing plan to evaluate the performance of design solutions.
  • Apply iteration to improve engineering designs.

The curriculum is designed as a full-year course as detailed below. The expectation is for students to have approximately 200 minutes per week for instructional contact time. Schools working on block schedules should adjust the per week expectations accordingly.

Quarter 1:  Introducing Engineering

Unit 1 - Engineering isEverywhere
Students will explore engineering through the evolution of engineering products. They will define engineering by relating it to their future plans and engaging in two one-day challenges. Students will begin to build their engineering identity.

Unit 2 - Engineering is… Creative
Students move from "group work" to "teamwork". the students then engage in a guided engineering challenge(s) tethered to a global issue in which they are provided a related problem and design, and then construct and test and evaluate product(s) to address a need. this challenge is water filtration.  

Quarter 2:  Applying Engineering: Generating a solution to a local problem

Unit 3 - Engineering isHuman-Centered
Teams of 3-4 students will select a local problem to research, sketch, and then prototype a solution. This will be an in-depth investigation into “What is the real problem” as well as stakeholder analysis. The goal is to understand the real problem, creatively construct a low-cost functional prototype and compare to existing solutions not necessarily refine, iterate, or ‘deliver.’  

Unit 4 - Engineering is... Responsive
Prototypes will be presented at an in-school design-a-thon and to community partners for critical feedback and user input. Design details will be documented in students' engineering design process portfolios.

From here, teachers can choose to proceed through Units 5-7, or choose to follow a path of either Unit 5 & 6, or Unit 7, depending on the comfort level of the teacher to allow more freedom in student-led teams and time available. All teachers will complete Unit 8.

Quarter 3:  Applying Engineering: Generating a solution to a global issue

Unit 5 - Engineering isIntentional
Teams of 3-4 students will identify a global issue and will identify a local problem that is associated with the global issue identified.  The issues and problems selected will be co-constructed by students and teachers and framed with the task of trying to change the world for less than $1,000.  Student teams will present a design brief to external evaluators in which they will justify their conceptual design concepts and project management plan for the chosen problem.

Unit 6 - Engineering is... Iterative
Team of 3-6 students will engage in all aspects of the design process.  Students will build, test, and optimize a prototype of the solution designed.  As time permits, students will re-design a solution based on what they learned from the testing of their first prototype to refine what they learned through iteration.  Student teams will generate a comprehensive engineering design report and will provide a design presentation. 

Quarter 4:  Generating an engineering solution to a problem relevant to you

Unit 7 - Engineering isPersonal
Students examine their day-to-day lives to find problems that can be tackled by teams of 3-4 students. Students may also solve a problem provided by a local community partner that is of personal interest to them. The process leading to a design solution is student-driven, teacher-guided, and highly informed by the prior experiences in the course. This is open ended co-creation.

Unit 8 - Engineering is... Reflective 

Students will reflect on both their engineering design process decisions and work as well as their teamwork in their final project. Students will also take part in a public showcase of their work

Download Curriculum SummaryDownload Unit GuidesBenefits & Requirements for Teachers

Top